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An elastic medium of simple structure with spatial dispersion was considered in [II. In the 

present papg we construct a more general model of a macroscopically homogeneous medium 

of complex structure which cannot be described adequately in terms of a single kinematic 

variable. As our initial micromodel we have chosen the familiar model of a complex chain 

each of whose unit cells has N degrees of freedom [2 and 31. In sec. 1 this model is gen- 

eralized for the case of a conth~ous mass distribution. New kinematic variables, namely 

the displacement of the centers of mass of the cells and microdeformations of various 

orders, are introduced. Appropriately, force micromoments are introduced as the force vari- 

ables. The algorithm introducedin [l] is used to effect a transition to equations of an 

elastic medium with spatial dispersion. The corresponding operations are expressed 

explicitly in terms of the initial microparameters. 

With the phenomenological approach, the resulting equations describe the most 

general one-dimensional model of a homogeneous linearly elastic medium of complex struc- 

ture with spatial dispersion. We also consider the general equations of a nonhomogeneous 

medium of periodic structure with a single kinematic variable. It is established that under 

certain conditions both of these models can be considered as representations of one and 

the same physical model, but with different areas of applicability. Formulas for converting 

from one representation to the other are presented. 

Section 2 contains a discussion of certain specific models and a derivation of the 

sufficient conditions under which the equations of a medium of complex structure admit 

of exact transformation into the equations of a medium of simple structure. It is shown that 

in the case of weak dispersion, the equations of a medium of complex structure with certain 

additional limitations coincide with the one-dimensional equations of the couple stress 

theory of elasticity [4 to 61. It is difficult to justify these limitations physically, however. 

The acoustic frequency range is of primary interest in elasticity theory. In sec. 3 it 

is shown that in the acoustic range it is always possible to transform the system of 

equations describing a complex structure into an equation with a single kinematic variable 

(the displacement of the centers of mass of the cells) and into equations explicitly solved 
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for the remaining variables. This involves both spatial and temporal dispersion, although 

the latter is not related to energy dissipation. 

It is important to note that the operators which appear in the equation involving the 

centers of mass are directly related to macroexperiment. Specifically, in the zemth approxi- 

mation them occurs a transition to the ordinary equation of elasticity theory with an elas- 

ticity constant which is determined by experiment. Because of this, it is our view that this 

representation is more adequate to the macroscopic description of a medium of complex 

strncture than the representations considered in sec. 1. 

1. We shall proceed on the basis of the Born model of an unbounded one-dimensional 

complex chain in the harmonic approximation [2 and 31. E ac unit cell numbered n contains h 

N particles with masses mi, each particle interacting elastically both with the particles 

of its own cell and with the particles of the other cells. The corresponding Lagrangian is 

of the form 

21; == 2 VljW’ (T?, i) W’ (n, j) - 

- 2 w(n, i)a,(n~n’, j, j’)w(n’, j’)+2~w(n, j)f(n, j) (1.1) 
nn’jj’ ni 

(j, i’ = 1,. .) IV) 

Here w (n. j) is the displacement of the j-th particle in the n-th cell, i (n, j) is the 

external force acting on it, and @ (n - n’, j, j’) = @ (n’ - 12, j’, j) are the force 

constants (the characteriatics of the corresponding springs in the mechanical analog). The 

dependence of the force constants on the difference n - n’is a consequence of the fact 

that the structure of the unit ccl1 recurs periodically in the chain. The requirement of the 

invariance of energy with respect to translation imposes certain conditions on the force 

constants [2]. We note that because of considerations similar to those cited in [II, the 

term linear with respect to displacement is omitted in the Lagrangian, i.e. initial forces 

are assumed to be lacking. 

Let us generalize this model for the case of an arbitrary (discrete and continuous) 

periodic mass distribution. Weintroduce the local cell coordinate [with its origin at the 

center of mass of the cell and denote by p (tl the density of masses in the cell. The 

Lagrangian then becomes 

To make the transition to a discrete mass distribution 

j ji’ 

where 4 is the coordinate of the particle in the cell. 

In order to avoid discussion of the convergence of the 

it is sufficient to set 

(1.3) 

j, j’) 6 (E - Ej) 6 (E’ - Ey’) 

corresponding sums in (1.21, we 

shall assume that the effective rangeis limited, i.e. that 0 (n, c, E’) differ from zero 
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for only a finite number of values n. As regards w (n, 0, we assume sufficient smoothness 

with respect to 6 and an increase not more rapid than of degree n as InI + 00. 

Considering the coordinate tin (1.1) as a parameter and making use of the algorithm 

cited in [I], we pass from the fnnction of the discrete argument n to functions of the conti- 

nuous variable x. The Lagrsngian L in the (k. w)-representation* then becomes (a is the 

size of the cell) 

4naL = co2 \ 5 p (E) w (k, E) w (k, E) dk dt - v 

- 1s 5 m(k, 0 (k, 5, 5’) w (k, 6’) dk dE 8, + 2 is w(k, f (k, E) dk dE (~4) 

In making the transition to elasticity theory it is convenient to introduce collective 

cell variables. Let us define the moments of inertia of order Q (p = 0, 1. . ..). 

Pcq) = + ’ p (E) Eg dt, s or p(*) = (p, E*) (1.5) 

where the parentheses denote the corresponding scalar product, andintroduce the diagonal 

matrices 

IQb = p(27)&l’1’, 
4; = P~z-&f (1.6) 

With the aid of the familiar algorithm, let us construct an orthonormal system of 

polynomiala eq (6) with th e weight p (4) and the reciprocal system of fnnctiona c 

defining them by the relations 
,‘(&, 

(p@, ev) = pm , (e,, ~7~‘) = 6;’ (1.7) 

It is easy to show that** 

e4 6) = P (8 Iqqc-leq’ GA (La) 

The biorthogonal functional basis which wehave constructed is fully defined by 

specifying p (5 ). In particular, when density is constant, eq ([) coincide with the Legendre 

polynomials. In the case of a discrete mass distribution the basis automatically turns out 

to be finite : q = 0, 1, . . . . N - I. 

Independently of p ([I, for the first two elements of the basis we have 

e” (8 = 1, e’ (0 = 5, e. (8 = p;~)-‘p (0, e, (E) = pia,-+ (E) E (1.9) 

Now let US expand all of the functions (in terms of the basis elements, 

w (k E) = q (k) 8 (D, f 6 E) = f” (N % (5) 
Q, (k Et E’) = aqq’(k) e,l (5) e,, (E’) 

(1.10) 

l We recall [l] that functions of k are here the Fourier transforms of functions of x. 
the point k belonging to the circle B of radius a”. Here and below the bar denotes 
the complex conjugate. 

** Here and below, summation over recurrent subscripts and superscripts is assumed. 
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The coefficients of the expansion are defined in the obvious way, 

wq (12) = (e,, w), f” (4 = (e”, fl 
~~- 

cV’ (k) = f jj iD (k. E, ~‘1 r’I (Q cq’ (E’) dE dg’ = W’“(k) (1.11) 

The first coefficients in the expansion have a simple physical meaning. Taking ac- 

count of (1.91, we find that wo is the displacement of the center of mass of the cell, UI~ 

is the average cell deformation (microdeformation), f” is the average force density, and 

f’ is the average force dipole density. The remaining coefficients correspond to micro- 

deformations and micromoments of higher orders. 

In the new variables the Lagrangian (1.4) can be written as 

(1.12) 

in terms of the symbols employed in [I]. 

The corresponding equations are of the form 

ozl’~~~‘w,i* (IC) - W’~‘(k) w,,(k) = - fQ (It) (1.13) 

As we know [2 and 31, the free oscillations of the complex chain are described in the 

(k, o)-representation by a single acoustic branch (extending from the origin) and N - 1 

optical branches. In the figure these are schematically shown as solid curves for a diatomic 

chain. On transition to a continuous mass distribution, the number of optical branches in- 

creases without limit. The corresponding transmission bands in the plane k, o will be called 

the acoustic and optical ranges. 

(u Of paramount interest in elasticity theory is the acoustic 

range, in which the principal kinematic variable is the dis- 

/’ ’ 
’ : 

M 

placement of the cell center of mass. Because of this, it 

\ is advisable to isolate this variable. 
c--_---’ /’ \ .-_--_I 

Let us introduce the symbols (p = 1, 2, . ..) 

‘K 

5 
ff 

TF 
u = wg, rip - [up; Q = f”, 11 P == f” (1.14) 

In accordance with the foregoing, we break down the matrix @qq’into blocks. The 

condition of energy invariance with respect to translation implies that (pPp ‘(k) can be 

represented in the form (p. p’= 1, 2, . ..) 

(1.15) 

where y (k), Xl7 (k) and I”‘“’ (k) z TF,J (Ic) are complete analytic functions uniqueIy 

defined by the specification of the initial matrix @ (k). 

Equations (1.13) can now be rewritten in the form of the system (p = pCo)) 

02pU (k) - Vy (k) u (k) - ik$’ (k) 11~ (k) = - 9 (k) 

02l~~‘q,,, (k) + ikXP (Ic) IL (k) - l’f’l,‘(k) l),,,(k) = - pp (h-1 
(1.161 
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The transition to the (x, t) -representation is obvious: the functions y , Xp and rpp ’ 

are associated with integral operators with difference kernels. 

The elastic energy @ can be written as 

(1.17) 

where q (z) is defined to within divergent terms. With the additional condition of invari- 

ance with respect to translation, ‘p (x1 is defined uniquely and can be interpreted as the 

density of the elastic energy. From (1.121, with allowance for (1.14) and (1.15). we find 

that 

2rp (z) = E (z) [y (x)*E (x)1 + qp(5) 129 (+:E (2) + ~pl”t~)*%‘(x)] (1.18) 

Here E (5) = U’ (2) is the macroscopic deformation, and the operation * denotes 

integral convolution. 

With the condition of bonndedness of the carriers u UC) and qp (k), this model as des- 

cribed by Equations (1.16) is an exact representation of the initial model with a periodic 

discrete or continuous mass distribution. Here y (k), XP (k). and rPP’(k) are expressed 
explicity in terms of th: microparameters of @(n, [, e ‘I. Conversely, for specified 

y(k). xp (k), and l-‘pp (k) wh’ h IC satisfy the obvious conditions it is possible to find 

@(n, 4‘. 5’). With aph enomenological approach, system (1.16) can be considered as the 

most general one-dimensional model of a macroscopically homogeneous linearly elastic 

system of complex stmcture with spatial dispersion *. 

It is important to note that a medium with a periodic stmcture can be described by a 

method different from that adopted in the Born model. In place of w (n, 5) and f(n, [) 

let us introduce the displacement w (z) and force density f(x) which depend on the single 

spatial coordinate n. In these variables the Lagrangian can be written as 

(1.19) 

2L = 1 p (z) zo2 (x) dx - i 1 w (5) @ (z, x’) w (x’) dzdx’ + 2 5 2~’ (5) f (x) dx 

and the conditions 

p (z) = p (5 + a), @ (L, z’) = 0 (X + a, 2’ + a) (1.20) 

must be fulfilled. 

Let us denote by w (x), and f (X) the Fourier transforms of w (x) and f(z), where 

x (in contrast to ti-_CB) belongs to the number axis R,. Further, let p (K) be the Fourier 

inverse image of p (2) and @ (X, X’) the Fourier transform of @(x, z’) with respect to 

x and its Fourier inverse image with respect to z‘. Then 

4xL = 02 
ss- 

w(x)~(x’-~)w(~‘)dx.dx’- 
(1.21) 

- s 5 w (x) CD (x, x’) w (x’) dx dx’ -+ 2 1 w (x) f (x) dx 

In contrast to (1.13). the equation of motion can be written as the integral equation 

* A medium of complex stmcture was considered from a different standpoint in 171. 
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(02 s p (z’ -‘- x) 7/‘ (y.‘) (IX’ - s Cl) (x, x’) 11‘ (xf) dx’ =- - f (x) (1 22) 

It can be shown that under condition (1.201, expressions (1.13) and (1.22) are exactly 

equivalent representations of one and the same physical model. Let us cite without proof 

the explicit formulas for effectin g the transition from one representation to the other. To 

do this we introduce the periodic &function 

The transition from (1.22) to (1.13) is given by the relations (&SR, xtn,) 

II’,, (Ii) -'- ’ h, (h, - 
\ (1 . 

x) (I’, (,,w (X) (1%. 1” (A’) b, (Ii - io 0” (x) ,/ (x)&f 

(I,““’ (X) 
(1.24) 

I, t 

while the matrix f qq’is given by (‘1.7). The inverse formulas are 

11’ (X) = + V4 (X) 5 Cs, (X -- k) ll‘,, (Ii) dk, I (xl ,;. I' ', (x) j b, [," - Is.1 p (k) rfl, 

p (x - x') = .f:- fs:, (2.c - x') P" P', (x) Oq (v.') (1.25) 

a)(%, X’) = ;6,(x - x’) c&x) (l)ilr’ (K) i+ (x’) 

where @?‘(X) is the periodic continuation of @‘1’1’(/2). It is easy to show that coudi- 

tions (1.20) are fulfilled here. 

We also take note of the relations 
(1.26) 

<I)*“‘!’ (x) P,I (X) :~ 5 CD (X, X’) @’ fX’) dx’, 

Thus, the above formuIas establish the identity of the modeIs of a macroscopically 

homogeneous medium with spatial dispersion as described by Equations (1.16) and that 

of a medium of periodic structure as described by Equation (1.22) under conditions (1.20). 

Nonetheless, the first model is, in a number of cases, more convenient. This is the case, 

for example, in considering wave processes and in converting to long-wave approximations, 

i.e. in the macrodescription of the medium. 

2. Let us consider some of the more important special models. Let the unit cell have 

a center of symmetry. It can be shown that in this case 

e? (- ;i) --: (--1)“P (X), 0) (X, X’) =-:. (1) (x’, X) 

From (1.24) it follows immediately that 
~~- 

lf,“‘J’ (__ /&.) :. Cf,‘i’i’ (k) _- (_I)‘1 ~‘i’~~,‘rv (k) (2.1) 

At the same time, it is difficult to indicate any real model in the case of the stronger 

condition a’,~ (- ti) = @‘I’(’ (i(.). 

It is of interest to determine the conditions under which Equation (1.16) of a medium 

of complex structure admits of transformation into the equations of a medium of simple 

structure [ 11. Cfearly, in this case (11 (x, 5’) = @ (X - z’) so that Q (x, 3~‘) = 

(I, (X) s (x -~~ x‘). 
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From (1.26) and (1.25) we find the necessary and sufficient conditions imposed on 

the force matrix. 

tltri~’ (x) e,, (x) r d) (xf eq’ (X) 
l (2.2) 

The conditions imposed on Iqq’ depend on the character of the mass distribution in 

the cell. Yn particular, for a continuous distribution of masses with the density p0 = corst 

I-?,, (x, = pod” (x), 

The spatial dispersion is due here only to the nonlocal character of the elastic in- 

teraction.* The transition to the ordinary eIastic model is effected upon making the addi- 

tional assumption of a limited range. 

Returning to Equations (1.16), let us consider the transition to long-wave approxi- 

mations, i.e. to the model of a medium with weak dispersion [I]. In this case the integral 

operators are replaced by differential operators with constant coefficients. For example, 

!\Pt y, Xi?, Rn d I’PP ’ be even functions of k . Then in the second approximation 

‘r (k) --: To .- -f&‘, ~1’ (h) ~= x0” - x2Pk2, rPP’(k) = r,,PP’ _ rZPP’g! (2.4) 

and the corresponding equations in the (x, t)-representation are of the form (D = d/d%), 

These equations represent one-dimensional analog of the couple-stress theory of 

elasticity [4 to 61. More precisely, in order to obtain one-dimensional equations of the 

couple-stress theory of elasticity from (2.51, it is necessary to make two assumptions i.e. 

that (a) there are only two degrees of freedom, i.e. p = 1; (@ it is necessary to limit one- 

self to the zeroth approximation in the first equation, i.e. to set ya = 0 and X, = 0 in that 

equation, and to retain the second approximation in the second equation. Whereas the 

first assumption corresponds to the selection of some specific model, the second 

assumption is difficult to justify: from the standpoint of the theory of spatial dispersion 

it does not appear correct. 

3. Asshown above, the principal interest in many problems is found in the acoustic 

range of vibrations. As in the case of crystals, the optical frequencies are on the order of 

10rS set -1 
, exceeding markedly the frequencies of mechanical oscillations, in such cases 

system (1.16) can be simplified considerably and reduced to one equation in the coordinate 

of the cell center of mass. 

Let us first consider the equations of the zeroth approximation, 

dp 72 (k) - P&$4 (k) - ik&)pqp (k) = - q (k) 

co21~~‘qp~ (AT) + ikxoPu (k) - rgp’ qp, (k) = - PL*(k) (3.1) 

It is easy to see that the equation for the characteristic frequencies for k I: 0 splits 

into the equation w = 0 for the acoustic frequency aad the equation ]ro?@ - oa@P’/ = 0 

* In the general case the spatial dispersion is a consequence of both the long range of 
action and the periodicity (discreteness) of the structure, 
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for optical frequencies. Stability considerations imply that the optical frequencies cannot 

vanish. For example, in the case of a diatomic chain this would mean that it breaks down 

into two simple unrelated chains. Thus, in the acoustic range there exists a matrix 

A” (0) = j/r0 - w2Ij-1. B ut this also implies the existence of the Hermitian matrix 

A (k, 0) = Ilr (k) - oJ211]-l (3.2) 

in some finite neighborhood of the origin of coordinates of the plane k, w . This neighbor- 

hood is determined by the boundary curve given by the equation r (x-> - 0~11 = 0. In 

the general case the investigation of the boundary curve poses certain difficulties; one 

can only say that for k = 0 it touches the lower optical curve and that A (k, o) definitely 

exists in the long-wave portion of the acoustic range. But for a diatomic chain with inter- 

acting proximate neighbors it can be shown that the boundary curve (the broken line in the 

figure) does not intersect the acoustic branch anywhere, so that A (k, o) exists through- 

out the acoustic range. The range of existence of A (k, w) will be referred to as the per- 

missible acoustic range. 

The matrix A (k, w) can be expressed in terms of A’(O) and the coefficients rs of 

the expansion of the matrix r (k), 

I?(k) = i (-- ik)“r, (3.3) 
s=o 

Let j (m) = {jlj2 . . -} be an arbitrary combination of integers j, such that 

By Aj(m)h) 
” 

we denote the bordered product 

(3.4) pi = AO . . . AorjyAo . . . ~0, iv E i Cm) 
A representation in the form of the series 

A (k, o) = ; (- ik)“Am (a), A” (a) = 2 Ai Cm) (CO) (3.5) 
m=o j 

is then valid in the corresponding circle of convergence for A (k, a). 

Wq note that in the static case (O = 0) th e matrix A (k) can be expressed in terms of 

rs and the numerical matrix ra-t. 

Using the matrix A (k. 01, we can solve the second equation of system (1.16) for 

7 
P 

(k) in the permissible acoustic range and eliminate 7 
P 

(k) from the first equation. The 

final result was the form 

o*pu (k) - k2c (k, CO) u (k) = - Q (k) 

rip (k) = ika, (k, 0) u (k) + A,dk, 0) pp’(k) 
(3.6) 

Here we employ the notation 

c (k, o)= y (k) - x” (k) A&k, 0) xP’(k), up (k, 0) = A,,,(k, ti; x?“(k) 
.__ 

Q (4 = q V4 + ikp (4, p W = - up @v 4pp (4 (3.7) 

Equations (3.6) in the permissible acoustic range are the exact equivalent of system 
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(1.16). In the zeroth approximation in the neighborhood of the acoustic branch (o %/c ) 

they assume the form 

dpu (k) - cok2u (k) = - Q (k) 

rip (4 = iup (0) ku (k) + A,,,~“(O),7~‘(k) 
(3.8) 

As expected, the first equation coincides with the equation of one-dimensional 

homogeneous continuum characterized by the elastic constant c,,. Precisely this elastic 

constant is determined from macroscopic experiments. Its relationship with the micro- 

parameters follows from (3.7), 

co = y. - x~“.&(O) x; (3.9) 

which agrees with the familiar expression [2]. 

The right side of the equation includes the equivalent external force density Q, which 

consists of two terms in accordance with (3.7). The first of these is the average external 

force density 4 and the second the negative derivative of the micromoment density ~1 in 

exact accord with ordinary macroscopic theory. Thus, the average micromoment density p 

corresponds to the macroscopic moment density. 

The density Q and, in the general case, Equations (3.6) can be interpreted in a 

similar manner. 

Extending our analogy with the macroscopic theory, we naturally interpret the quantity 

6 (k) =I c (k, o) E (k) (e(k) = - iku (h-)) (3.10) 

as the stress. The first equation of (3.6) in the (z, &representation now becomes 

+’ (x) - Do (x) = Q (5) (3.11) 

and relation (3.10) corresponds to the operator Hooke’s law. 

Transforming (1.18) and taking account of (3.6), we find the expression for the elastic 

energy density, 

rp(++(~)&(2) (3.12) 

Hence it follows that the stress u can also be defined as the generalized force cor- 

responding to the generalized displacement - the strain E , in full accord with ordinary 

elasticity theory. 

Thus, the above representation is more in keeping with the spirit of the macroscopic 

theory and the mechanics of continuous media than is the representation considered in 

sec. 1. In particular, it hardly makes sense to introduce a (generally infinite) array of 

stress tensors corresponding to Equations (1.16). It must be pointed out, however, that 

whereas Equations (1.16) involve only spatial dispersion, Equation (3.6) encompasses 

both spatial and temporal dispersion, although the latter does not result in energy dissipa- 

tion in the present case. 

With allowance for (1.15) and (3.21, it foilows from (3.7) that c (k, o) is an even 

function of k and O. For this reason, in the case of weak dispersion Hooke’s law in the 

second approximation can be written as 

0 (z) = (c, 1- c,D2 + c,'Dt2) E (2) (Dt = d / dt) (3.13) 



1034 i-A. Kunin 

Here cp and c1 ‘are the corresponding coefficients of the expansion of c (k, W) in the 

long-wave neighborhood of the acoustical branch (U Q k). Equations (3.11) become 

where J I= p --- Cn’I12 can, if one wishes, be interpreted as the operator inertial char- 

acteristic of the medium. 

In conclusion we note that a similar transformation of Equations (1.16) is also 

possible in the neighborhood of the optical branch. 
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